
Graham Steel 5 March 2013

Cryptographic Key Management APIs
Graham Steel



In this Lecture

I What is a Cryptographic Security API?
I RSA PKCS#11 (Cryptoki)
I Vulnerabilities and mitigations
I Formal Analysis
I Other Crypto APIs

Graham Steel - Cryptographic Security APIs 5 March 2013 - 2/ 61



Cryptographic Key Management

“Key management is the hardest part of cryptography and often
the Achilles’ heel of an otherwise secure system.”

- B. Schneier, Applied Cryptography (2nd edition)
Management of whole key lifecycle:

I Key creation and destruction
I Key establishment and distribution
I Key storage and backup/restore
I Key use according to policy and auditing/reporting
I Key update/refresh

Graham Steel - Cryptographic Security APIs 5 March 2013 - 3/ 61



Crypto in Enterprises

Graham Steel - Cryptographic Security APIs 5 March 2013 - 4/ 61



Key Management APIs

Increasing trend towards dedicated key management devices:

I HSMs for back office
I Smartcards + USB keys for agents
I Servers providing ‘cryptography service’ over network

Use of secure hardware for key management mandated in some
sectors (e.g. in ISO 9564 for financial)

Each device has a security API

Graham Steel - Cryptographic Security APIs 5 March 2013 - 5/ 61



RSA PKCS#11

Public Key Cryptography Standard number 11

– PKCS are edited by the RSA company
– PKCS #1 describes the RSA encryption algorithm, padding etc.
– other standards describe password based encryption, certificate
formats etc.
– v1.0 of PKCS#11 1995, v2.20 2004

Browse it online:
http://www.cryptsoft.com/pkcs11doc/v220/

Graham Steel - Cryptographic Security APIs 5 March 2013 - 6/ 61

http://www.cryptsoft.com/pkcs11doc/v220/


PKCS#11 Drivers

Graham Steel - Cryptographic Security APIs 5 March 2013 - 7/ 61



Sots, Tokens, Sessions, PINs

A PKCS#11 driver offers several slots

Each slot may contain a token (i.e. a device)

Application programs open a session with a token

Opening a session requires a PIN

There are 2 PINs: User and Security Officer (SO)

Graham Steel - Cryptographic Security APIs 5 March 2013 - 8/ 61



Object Model

Keys (and other objects) accessed by handles

Key have attributes to control usage

Graham Steel - Cryptographic Security APIs 5 March 2013 - 9/ 61



Graham Steel - Cryptographic Security APIs 5 March 2013 - 10/ 61



Key Templates

A key template is a partial specification of key attributes

Used for creating, manipulating, and searching for objects

Consists of an array of CK ATTRIBUTEs

Each attribute is a structure containing type, value, length

Order is unimportant

Graham Steel - Cryptographic Security APIs 5 March 2013 - 11/ 61



Generating keys

C GenerateKey :

T new n,k−−−−→ h(n, k);T

Handle h(n,k) is returned, or CKR TEMPLATE INCONSISTENT,
CKR TEMPLATE INCOMPLETE

Graham Steel - Cryptographic Security APIs 5 March 2013 - 12/ 61



Setting Key Attributes

C SetAttributeValue :
T , h(n, k) → h(n, k);T

T can specify new values for any attributes, but may cause
CKR TEMPLATE INCONSISTENT,
CKR ATTRIBUTE READ ONLY

Graham Steel - Cryptographic Security APIs 5 March 2013 - 13/ 61



Wrap and Unwrap

Wrap :
h(x1, y1), h(x2, y2); wrap(x1), → {y2}y1

extract(x2)

Unwrap :

h(x2, y2), {y1}y2 , T ; unwrap(x2)
new n1−−−−→ h(n1, y1); extract(n1), T

May cause CKR WRAPPED KEY INVALID,
CKR WRAPPING KEY HANDLE INVALID,
CKR UNWRAPPING KEY HANDLE INVALID

Graham Steel - Cryptographic Security APIs 5 March 2013 - 14/ 61



Graham Steel - Cryptographic Security APIs 5 March 2013 - 15/ 61



Key Usage

Encrypt :
h(x1, y1), y2; encrypt(x1) → {y2}y1

Decrypt :
h(x1, y1), {y2}y1 ; decrypt(x1) → y2

Graham Steel - Cryptographic Security APIs 5 March 2013 - 16/ 61



PKCS#11 Security

Section 7 of standard:
“1. Access to private objects on the token, and possibly to
cryptographic functions and/or certificates on the token as well,
requires a PIN.
2. Additional protection can be given to private keys and secret
keys by marking them as “sensitive” or “unextractable”. Sensitive
keys cannot be revealed in plaintext off the token, and
unextractable keys cannot be revealed off the token even when
encrypted”
“Rogue applications and devices may also change the commands
sent to the cryptographic device to obtain services other than what
the application requested [but cannot] compromise keys marked
“sensitive,” since a key that is sensitive will always remain
sensitive. Similarly, a key that is unextractable cannot be modified
to be extractable.”

Graham Steel - Cryptographic Security APIs 5 March 2013 - 17/ 61



Graham Steel - Cryptographic Security APIs 5 March 2013 - 18/ 61



Graham Steel - Cryptographic Security APIs 5 March 2013 - 19/ 61



Wrap/Decrypt Attack (Clulow, 2003)

Graham Steel - Cryptographic Security APIs 5 March 2013 - 20/ 61



Wrap/Decrypt Attack (Clulow, 2003)

Intruder knows: h(n1, k1), h(n2, k2).
State: wrap(n2), decrypt(n2), sensitive(n1), extract(n1)

Wrap: h(n2, k2), h(n1, k1) → {k1}k2

Decrypt: h(n2, k2), {k1}k2 → k1

Graham Steel - Cryptographic Security APIs 5 March 2013 - 21/ 61



How to fix decrypt/wrap attack?

Would like to prevent any key from being able to wrap and decrypt.

First idea: prevent any template T from having wrap and decrypt
set in all operations (Generate, SetAttribute, Unwrap etc.)

Is this sufficient?

no..

Graham Steel - Cryptographic Security APIs 5 March 2013 - 22/ 61



Attack 2

Initial state: n2 has only wrap set

Wrap: h(n2, k2), h(n1, k1) → {k1}k2

SetAttribute h(n2, k2), wrap=false → h(n2, k2) ; ¬wrap(n2)
SetAttribute h(n2, k2), decrypt=true → h(n2, k2) ; decrypt(n2)
Decrypt: h(n2, k2), {k1}k2 → k1

Graham Steel - Cryptographic Security APIs 5 March 2013 - 23/ 61



Sticky Attributes

Introduce some attributes which once set, cannot be unset.

Sticky on and Sticky off

Note: PKCS#11 already specifies some attributes like this, such as
CKA EXTRACTABLE and CKA SENSITIVE

We add decrypt and wrap to sticky on - is this enough?

We turn to formal methods to find out

Graham Steel - Cryptographic Security APIs 5 March 2013 - 24/ 61



Formal Model

[Delaune, Kremer ,S. CSF ’08]

Rules:

T ; L new ñ−−−→ T ′; L′

Standard transition system semantics, but no longer monotonic
Attributes in the model:
encrypt, decrypt, wrap, unwrap, sensitive, extractable

Graham Steel - Cryptographic Security APIs 5 March 2013 - 25/ 61



Modes

h : Nonce× Key→ Handle
senc : Key × Key→ Cipher
aenc : Key × Key→ Cipher
pub : Seed→ Key
priv : Seed→ Key

a : Nonce→ Attribute for all a ∈ A
x1, x2, n1, n2 : Nonce
y1, y2, k1, k2 : Key

z, s : Seed

Graham Steel - Cryptographic Security APIs 5 March 2013 - 26/ 61



Modelling the Attribute Policy

Set Wrap : h(x1, y1); ¬wrap(x1) → wrap(x1)
Set Encrypt : h(x1, y1); ¬encrypt(x1) → encrypt(x1)

...
...

UnSet Wrap : h(x1, y1); wrap(x1) → ¬wrap(x1)
UnSet Encrypt : h(x1, y1); encrypt(x1) → ¬encrypt(x1)

...
...

Remove rules for sticky on and sticky off attributes

Graham Steel - Cryptographic Security APIs 5 March 2013 - 27/ 61



Fix decrypt/wrap attack..

Add conflicts:

Set Wrap : h(x1, y1); ¬wrap(x1),¬decrypt(x1) → wrap(x1)
Set Decrypt : h(x1, y1); ¬wrap(x1),¬decrypt(x1) → decrypt(x1)

Add sticky attributes:
Remove Unset Wrap
Remove Unset Decrypt

Graham Steel - Cryptographic Security APIs 5 March 2013 - 28/ 61



Another Attack

Intruder knows: h(n1, k1), h(n2, k2), k3
State: sensitive(n1), extract(n1), unwrap(n2), encrypt(n2)

Encrypt: h(n2, k2), k3 → {k3}k2

Unwrap: h(n2, k2), {k3}k2
new n3−−−−→ h(n3, k3)

Set wrap: h(n3, k3) → wrap(n3)
Wrap: h(n3, k3), h(n1, k1) → {k1}k3

Intruder: {k1}k3 , k3 → k1

Graham Steel - Cryptographic Security APIs 5 March 2013 - 29/ 61



Fix decrypt/wrap, encrypt/unwrap..

Intruder knows: h(n1, k1), h(n2, k2), k3
State: sensitive(n1), extract(n1), extract(n2)

Set wrap: h(n2, k2) → wrap(n2)
Wrap: h(n2, k2), h(n2, k2) → {k2}k2

Set unwrap: h(n2, k2) → unwrap(n2)

Unwrap: h(n2, k2), {k2}k2
new n4−−−−→ h(n4, k2)

Wrap: h(n2, k2), h(n1, k1) → {k1}k2

Set decrypt: h(n4, k2) → decrypt(n4)
SDecrypt: h(n2, k2), {k1}k2 → k1

Graham Steel - Cryptographic Security APIs 5 March 2013 - 30/ 61



More Attacks on PKCS#11

The “Unwrap to non-sensitive attack”

Suppose h(n1, k1) is a handle to a sensitive key

Wrap: h(n2, k2), h(n1, k1) → {k1}k2

Unwrap :

h(n2, k2), {k1}k2 , T ; unwrap(n2)
new n3−−−−→ h(n3, k1);

extract(n3), T
Where T has sensitive=false

GetValue: h(n3, k1) → k1

Graham Steel - Cryptographic Security APIs 5 March 2013 - 31/ 61



And More Attacks on PKCS#11

The “wrap with non-sensitive” attack’

Suppose h(n1, k1) handle to a sensitive key, h(n2, k2) has
sensitive=false

Wrap: h(n2, k2), h(n1, k1) → {k1}k2

GetValue: h(n2, k2) → k2

Attacker decrypts {k1}k2 himself to obtain k1

Graham Steel - Cryptographic Security APIs 5 March 2013 - 32/ 61



Other PKCS#11 Problems

I Wrap with weaker key
I ECB split on DES keys
I Unwrap with PKCS#1.5 or CBC-PAD: error codes can lead to

padding oracle attacks
(we will look at this in more detail in the practical)

Graham Steel - Cryptographic Security APIs 5 March 2013 - 33/ 61



In the next half

I How to fix PKCS#11
I Trusted Keys
I Wrap formats
I Restricted Templates
I Programming PKCS#11 with Bees
I The Tookan analysis tool

Graham Steel - Cryptographic Security APIs 5 March 2013 - 34/ 61



Fixing PKCS#11

Many smartcard maufacturers remove all the wrapping and
unwrapping functionality from PKCS#11

This might be ok for smartcards, but other devices with richer
functionality (like HSMs) need to do these operations

There are in fact several ways to build secure interfaces using the
standard, many with security proofs

Some are included in the standard v2.20, some are extensions
(note that not many devices actually implement v2.20)

Graham Steel - Cryptographic Security APIs 5 March 2013 - 35/ 61



Unwrap Templates

Inside the template of a key k, we can give a pointer to another
template which will be given to all keys unwrapped using k

This is useful: we can say that all keys will be sensitive, all keys
will have wrap=false, etc.

We can even give an unwrap template inside the unwrap
template. . .

Could in theory give us a template of unbounded size, but the
token memory is typically small.

Introduced in PKCS#11 v2.20 but not yet widely supported

Graham Steel - Cryptographic Security APIs 5 March 2013 - 36/ 61



Wrap Format

We saw that problems were caused by unwrapping a key with a
different template from its original one

We can prevent this by binding the attributes to the encrypted key

The Eracom HSM range already includes a method for this

Can we verify this if the attribute policy is good? Start by
formalising attribute policy

Graham Steel - Cryptographic Security APIs 5 March 2013 - 37/ 61



KeyGenerate :
new n1,k1−−−−−→ h(n1, k1); L(n1),¬extract(n1)

Wrap :
h(x1, y1), h(x2, y2); wrap(x1), extract(x2) → {y2}y1

Unwrap :

h(x2, y2), {y1}y2 ; unwrap(x2)
new n1−−−−→ h(n1, y1); L(n1)

Encrypt : h(x1, y1), y2; encrypt(x1) → {y2}y1

Decrypt : h(x1, y1), {y2}y1 ; decrypt(x1) → y2

Set Encrypt : h(x1, y1); ¬encrypt(x1) → encrypt(x1)
UnSet Encrypt : h(x1, y1); encrypt(x1) → ¬encrypt(x1)

...
...

Graham Steel - Cryptographic Security APIs 5 March 2013 - 38/ 61



KeyGenerate :
new n1,k1−−−−−→ h(n1, k1); A(n1)

Wrap :
h(x1, y1), h(x2, y2); wrap(x1), extract(x2) → {y2}y1

Unwrap :

h(x2, y2), {y1}y2 ; unwrap(x2)
new n1−−−−→ h(n1, y1); A(n1)

Encrypt : h(x1, y1), y2; encrypt(x1) → {y2}y1

Decrypt : h(x1, y1), {y2}y1 ; decrypt(x1) → y2

Set Attribute Value : h(x1, y1); A1(x1) → A2(x1)

Graham Steel - Cryptographic Security APIs 5 March 2013 - 39/ 61



Attribute Policy

An attribute policy is a finite directed graph P = (SP ,→P) where
SP is the set of allowable object states, and →P ⊆ SP × SP is the
set of allowable transitions between the object states.
An attribute policy P = (S,→) is complete if P consists of a
collection of disjoint, disconnected cliques, and for each clique C ,
c0, c1 ∈ C ⇒ c0 ∪ c1 ∈ C

We insist on complete policies, assuming intruder can always copy
keys.

Graham Steel - Cryptographic Security APIs 5 March 2013 - 40/ 61



Graham Steel - Cryptographic Security APIs 5 March 2013 - 41/ 61



Graham Steel - Cryptographic Security APIs 5 March 2013 - 42/ 61



Endpoints

We call the object states of S that are maximal in S with respect
to set inclusion end points of P.

Theorem: Derivation in API with complete policy iff derivation in
API with (static) endpoint policy

Graham Steel - Cryptographic Security APIs 5 March 2013 - 43/ 61



Bounds

Assume endpoint policies
Make series of simple transformations

I Bound number of fresh keys to number of endpoints #ep
- get the same key every time a particular endpoint is
requested

I Bound number of handles to (#ep)2

- for each key, get one handle for each endpoint

Intruder always starts with his own key
so require #ep + 1 keys and (#ep + 1)2 handles

Graham Steel - Cryptographic Security APIs 5 March 2013 - 44/ 61



KeyGenerate :
new n1,k1−−−−−→ h(n1, k1);A(n1)

Wrap :

h(x1, y1), h(x2, y2); wrap(x1),A(x2)
new mk−−−−→ {y2}y1 , {mk}y1

hmacmk(y2,A)

Unwrap :

h(x2, y2), {y1}y2 , {xm}y2 ,
new n1−−−−→ h(n1, y1); A(n1)

hmacxm(y1,A); unwrap(x2)

Encrypt : h(x1, y1), y2; encrypt(x1) → {y2}y1

Decrypt : h(x1, y1), {y2}y1 ; decrypt(x1) → y2

P = ({e, d , ed ,w , u,wu},→) (where → makes the obvious cliques)

Graham Steel - Cryptographic Security APIs 5 March 2013 - 45/ 61



Model checking - 2

A known key is a key k such that the intruder knows the plaintext
value k and the intruder has a handle h(n, k).
Property 1 If an intruder starts with no known keys, he cannot
obtain any known keys.
Verified for our API in 0.4 sec
Property 2 If an intruder starts with a known key ki with handle
h(ni, ki), and ed(ni) is true, then he cannot obtain any further
known keys.
Attack

Graham Steel - Cryptographic Security APIs 5 March 2013 - 46/ 61



Lost session key attack

Initial knowledge: Handles h(n1, k1), h(n2, k2), and h(ni, ki). Key
ki. Attributes ed(n1),wu(n2), ed(ni).

Trace:
Wrap: (ed) h(n2, k2), h(ni, ki) →

{ki}k2 , {k3}k2 , hmack3(ki, ed)
Unwrap: (wu) h(n2, k2), {ki}k2 , {ki}k2 ,

hmacki(ki,wu) → h(n2, ki)
Wrap: (ed) h(n2, ki), h(n1, k1) →

{k1}ki , {k3}ki , hmack3(k1, ed)
Decrypt: ki, {k1}ki → k1

Graham Steel - Cryptographic Security APIs 5 March 2013 - 47/ 61



Revised API

Wrap :

h(x1, y1), h(x2, y2); wrap(x1),A(x2)
new mk−−−−→ {y2}y1 , {mk}y1

hmacmk(y2,A, y1)

Unwrap :

h(x2, y2), {y1}y2 , {xm}y2 ,
new n1−−−−→ h(n1, y1); A(n1)

hmacxm(y1,A, y2); unwrap(x2)

Property 2 now verified by SATMC
Can also verify attribute policy is enforced

Graham Steel - Cryptographic Security APIs 5 March 2013 - 48/ 61



Other Fixes

Using no new cryptographic mechanisms, v2.11 of standard:
Allow only generate templates {wu,ed}, unwrap templates { eu },
all attributes sticky on and off.
Requires one key for each direction of communication.
See [Bortolozzo, Centenaro, Focardi, S. ’10]

Keys can be marked wrap with trusted
A key marked wrap with trusted can only be wrapped with a key
marked trusted
See [Delaune, Kremer, Steel ’08], [Fröschle, FAST ’11]

Graham Steel - Cryptographic Security APIs 5 March 2013 - 49/ 61



‘Tool for cryptoKi Analysis’

Graham Steel - Cryptographic Security APIs 5 March 2013 - 50/ 61



Graham Steel - Cryptographic Security APIs 5 March 2013 - 51/ 61



Device can wrap Category of attacks found
Brand Model sensitive wrap-decrypt read sensitive/

keys variant unextractable
Aladdin eToken PRO X X
Athena ASEKey
Bull Trustway RCI X X
Eutron Crypto Id. ITSEC
Feitian StorePass2000 X X X
Feitian ePass2000 X X X
Feitian ePass3003Auto X X X
Gemalto SEG
MXI Stealth MXP Bio
RSA SecurID 800 X
SafeNet iKey 2032
Sata DKey X X X
ACS ACOS5
Athena ASE Smartcard
Gemalto Cyberflex V2 X X
Gemalto SafeSite V1
Gemalto SafeSite V2 X X X
Siemens CardOS X

Sample results on smartcards/USB tokens

Graham Steel - Cryptographic Security APIs 5 March 2013 - 52/ 61



The Bee Library

Programming PKCS#11 directly in C can be tedious and error
prone: lots of housekeeping for pointers and memory, structures for
templates, etc.

Many wrappers exist for programming in C or other languages:
IAIK, PyKCS11, pkcs11-helper, Bees

Bees was developed in the Tookan project and includes a C++
and Java interface

We will examine java-Bee now via some examples

Graham Steel - Cryptographic Security APIs 5 March 2013 - 53/ 61



Example: Opening a session, get info

import bee.*;
public class GetInfo
{

public static final String LIB =
"/usr/local/lib/opencryptoki/libopencryptoki.so";

public static final String PIN = "12345";
public static void main(String[] args)

throws BeeException
{

Bee b = new Bee(LIB, PIN, 0);
TokenInfo info = b.getTokenInfo();
System.out.println(info);
b.logout();

}

Graham Steel - Cryptographic Security APIs 5 March 2013 - 54/ 61



Example: Opening a session, get info

ObjectHandle[] objs = b.find(new Template());
System.out.println(objs.length + " object(s) found");
for (ObjectHandle o : objs)
{
String label;
try {label = o.getTemplate().getLabel();}
catch (BeeException e) {label = e.getMessage();}
System.out.println("\t" + i + ": " + label);

}

Graham Steel - Cryptographic Security APIs 5 March 2013 - 55/ 61



Example: Creating and Manipulating a Key

Template t = new Template();
t.setToken(true);
ObjectHandle key = b.generateKey(t);

t = new Template();
t.setEncrypt(true);
key.setTemplate(t); //calls SetAttributes

Graham Steel - Cryptographic Security APIs 5 March 2013 - 56/ 61



Example: Using a Key

byte[] val = b.symWrap(key1, key2);

byte[] val2 = b.symEncrypt(val2, key2);

Template bar = new Template();
bar.setObjClass(new Pkcs11Class(Pkcs11Class.SECRET_KEY));
bar.setKeyType(new KeyType(KeyType.AES));

val2 foo = b.symUnwrap(val, key1, bar);

(Catch BeeExceptions!)

Graham Steel - Cryptographic Security APIs 5 March 2013 - 57/ 61



Alternatives to PKCS#11

Cortier & Steel API
I First presented at ESORICS 2009
I Keys assigned fixed attributes at creation time: level and

agent identifiers
I Extended to revocation (CCS ’12) and asymmetric crypto (to

appear)
I A version to be implemented in a French MoD project

Cachin & Chandran API
I Presented at CSF 2009
I Keys attributes evolve over time with usage (so central server

required)
I Implemented in an IBM product

Graham Steel - Cryptographic Security APIs 5 March 2013 - 58/ 61



Alternatives to PKCS#11 - 2

Both proposals have some points in common:

I Attributes of key tied to key value on export
I Key role separation enforced
I Authenticated encryption schemes

Will new industry proposals, e.g. KMIP reflect this?

Graham Steel - Cryptographic Security APIs 5 March 2013 - 59/ 61



Summary

I RSA PKCS#11 is ubiquitous in key management APIs
I Many attacks, many approaches to securing
I Tookan: an automated audit tool
I Bees: a java library for PKCS#11 programming
I Alternatives emerging in academia and industry

Graham Steel - Cryptographic Security APIs 5 March 2013 - 60/ 61



Further Reading

RSA PKCS#11,
www.rsa.com/rsalabs/node.asp?id=2133

J. Clulow, On The Security of PKCS#11, CHES 2003

S. Delaune, S. Kremer and G. Steel, Formal Analysis of PKCS#11
and Proprietary Extensions, CSF 2008

M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel, Attacking
and Fixing PKCS#11 Security Tokens, CCS 2010

S. Fröschle and G. Steel, Formal Analysis of PKCS#11 with
Unbounded Fresh Data, WITS 2009

Graham Steel - Cryptographic Security APIs 5 March 2013 - 61/ 61

www.rsa.com/rsalabs/node.asp?id=2133

	In this Lecture

